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We consider the nonlinear spatial evolution in the streamwise direction of slightly 
three-dimensional disturbances in the form of oblique travelling waves (with spanwise 
wavenumber k, much less than the streamwise one k,) in a mixing layer u,  = u(y)  at 
large Reynolds numbers. A study is made of the transition (with the growth of 
amplitude) to the regime of a nonlinear critical layer (CL) from regimes of a viscous 
CL and an unsteady CL, which we have investigated earlier (Churilov & Shukhman 
1994). We have found a new type of transition to the nonlinear CL regime that has no 
analogy in the two-dimensional case, namely the transition from a stage of ‘explosive’ 
development. A nonlinear evolution equation is obtained which describes the 
development of disturbances in a regime of a quasi-steady nonlinear CL. We show that 
unlike the two-dimensional case there are two stages of disturbance growth after 
transition. In the first stage (immediately after transition) the amplitude A increases as 
x. Later, at the second stage, the ‘classical’ law A - .x’/~ is reached, which is usual for 
two-dimensional disturbances. It is demonstrated that with the growth of k, the region 
of three-dimensional behaviour is expanded, in particular the amplitude threshold of 
transition to the nonlinear CL regime from a stage of ‘explosive’ development rises and 
therefore in the ‘strongly three-dimensional’ limit k, = O(k,) such a transition cannot 
be realized in the framework of weakly nonlinear theory. 

1. Introduction 
It is well known that in linear theory the most unstable disturbances in free shear 

flows of homogeneous incompressible fluid are two-dimensional. Recent studies 
(Goldstein & Choi 1989; Wu 1 9 9 3 ~ ;  Wu, Lee & Cowley 1993; Churilov & Shukhman 
1994; Goldstein 1994) of the weakly nonlinear evolution of perturbations in such flows 
at high Reynolds numbers have demonstrated that three-dimensional perturbations 
can grow explosively, i.e. much faster than two-dimensional ones. 

Such a difference is not very surprising from the viewpoint of general theory of self- 
interacting unstable wave dynamics in shear flows (Churilov & Shukhman 1992). (In 
this paper we do not consider interaction between different waves, see e.g. Goldstein 
1994). In the weakly nonlinear theory of high-Reynolds-number shear flows it is the 
critical layer (i.e. the thin layer containing the critical level at which the flow velocity 
is equal to the phase velocity of the wave) in which the main nonlinear processes take 
place. Hence the evolution behaviour of a perturbation strongly depends on the regime 
of the critical layer (CL) and the properties of the neutral mode in the CL. Recall from 
Churilov & Shukhman (1992) that the CL is viscous, unsteady or nonlinear depending 
on which of the three scales (viscous 1,, = v1/3, unsteady 1, = 1A-I dA/d[( or nonlinear 
1, = All2) is greater ( v  is the inverse Reynolds number, A is the wave amplitude and [ 
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FIGURE 1. The evolution of two-dimensional disturbances. Curve 1, nonlinearity threshold in the 
viscous CL regime. 
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FIGURE 2. The evolution of 'strongly three-dimensional' disturbances. Curves 1 and 2, nonlinearity 
thresholds in the regimes of viscous and unsteady CL, respectively; curve 3, A - P, formal 
boundary between viscous and nonlinear CL; curve 4, A - yf, formal boundary between unsteady 
and nonlinear CL. 

is the evolution variable - time or streamwise coordinate; all quantities are scaled by 
the characteristic velocity and width of flow). 

In homogeneous incompressible flows the two-dimensional neutral mode with one 
CL is regular and the evolution of unstable two-dimensional perturbations is as shown 
in figure 1 (see Churilov & Shukhman 1992 and references therein; yL is the linear 
growth rate considered as a measure of supercriticality). When supercriticality is low 
enough (yL c v or, in some flows, yL c P) an unstable perturbation development is 
described by a Landau-typt volution equation 

b, A'"'' 



Disturbances to a mixing layer in the nonlinear regime 59 

and instability is saturated in the viscous CL regime. (Usually, it is sufficient to take 
into account only the cubic nonlinearity, but in some cases the term - A5 is also 
needed.) At higher supercriticality a perturbation increases exponentially to certain 
level (A = O ( V ~ / ~ )  in the viscous CL regime or A = O(y2) in the unsteady CL regime) 
and then transition to the nonlinear CL regime occurs. This transition is accompanied 
by a restructuring of the CL and results in a reduction of the growth rate (Huerre & 
Scott 1980; Churilov & Shukhman 1987a) 

which leads to a change in the exponential growth of amplitude for a slow power-law 
growth as A - 52/3 in accordance with the nonlinear evolution equation (NEE) 

Note that in both (1.1) and (1.3) the nonlinearity is an algebraic (local) one, i.e. it is 
determined by the value of the amplitude at a current point 5. 

Three-dimensional (oblique) neutral modes are singular (at least one physical 
quantity has a singularity), and when the applicability conditions of Squire’s theorem 
are not satisfied, as discussed in detail by Churilov & Shukhman (1994, hereinafter 
referred to as C & S), the unstable perturbation evolution closely resembles the 
behaviour of two-dimensional disturbances in those flows where the neutral mode on 
the CL is singular as, for example, in stratified (Churilov & Shukhman 19873, 1988) 
or compressible (Goldstein & Leib 1989; Shukhman 1991) flows. 

A corresponding type of evolution behaviour is shown in figure 2. Here the threshold 
of nonlinearity (the amplitude at which the nonlinearity becomes competitive), both 
in the regime of a viscous CL (y, < v113, curve 1) and in the regime of an unsteady CL 
(yL > v113, curve 2), is below the formal boundary of a nonlinear CL (lines 3 and 
4); therefore, at any supercriticality yL the evolution is already becoming nonlinear 
(i.e. nonlinearity begins to play an important role in the dynamics of disturbances) in 
linear (i.e. viscous or unsteady) CL regimes. 

In the regime of a viscous CL, upon reaching the threshold of nonlinearity, the 
amplitude growth stops (C&S) or even reverses (Wu et al. 1993) leading to the total 
dissipation of the disturbance. In the regime of an unsteady CL, however, the 
intersection of the nonlinearity threshold leads to an explosive growth of the 
disturbance as A - (&-5)-3 for a pair of oblique waves (Goldstein & Choi 1989; Wu 
et al. 1993), or A - (E0 - 5)-5/2 for a single travelling wave (C & S). During this explosive 
growth the unsteady scale It remains larger than the nonlinear one I ,  up to A = O( l), 
so that there is no evolution to the regime of a nonlinear CL. 

To describe ‘explosive’ processes requires a totally different (from (1.2) and (1.3)) 
type of NEE, the NEE with non-local nonlinearity of the form 

m 1 dA 
- = y L A - b l  d[F(  daK(a)A(E;-y)A(g--y)X((5-(1+a)y) (1.4) 
d5 0 0 

first obtained by Hickernell (1984). The explicit form of the kernel K(r) = O(1) is 
specific to each problem; the overbar denotes complex conjugacy. Similar equations 
have been obtained for stratified (Churilov & Shukhman 1988) and compressible 
(Goldstein & Leib 1989; Shukhman 1991) flows in the two-dimensional case. Note also 
that in the case of a three-dimensional disturbance the NEE has non-local nonlinearity 
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FIGURE 3. Structure of the inner region. CL, critical layer: - Iy--j~,J ( E ' I / ~ ) ~ / ~ ;  ODL, outer 
diffusion layers: (q/p)*12 - ly-y,l < 1. 

even in the regime of a viscous CL (Wu et al. 1993; Wu 1993b; Smith & Blennerhassett 
1992; C & S) and is 

(1.5) -- dJA'2 - 2yLlA/'+blAlz/~ dcp1A(c-lJ2. 
d5 

These are the main differences in the evolutionary behaviour of three- and two- 
dimensional disturbances. 

One can legitimately ask what is the 'degree of three-dimensionality' at which the 
'two-dimensional ' behaviour changes to a 'three-dimensional' one. The answer can be 
found by studying the changes when k,  is varied from 0 to O(k,) (k  is a wave vector 
of the disturbance, the x-axis is streamwise, and the y-axis is along the velocity 
gradient). In this paper we try to do this. 

Note that the coefficient b in equations (1.4) and (1.5) is proportional to k:. When 
k,2 < 1, 'oblique' terms in the NEE are reduced and are only able to withstand 
competition from traditional ('two-dimensional ') nonlinearity in some part of a 
'weakly-nonlinear domain' (defined by unequalities [At 4 1, yL 4 1). but in the other 
part of this domain the perturbation behaviour becomes two-dimensional : a growth of 
amplitude would lead (at a sufficiently large supercriticality yL > v2l3) to the transition 
to the regime of a nonlinear CL. According to estimates made in C & S, this takes place 
at A - u213 if the perturbation growth starts in the viscous CL regime (yL < vl/') and 
at A - max (k;, 7;) if it starts in the unsteady CL regime (yL > ~ l / ~ ) .  

Now let us recall the main point of transition to the nonlinear CL regime and the 
further evolution of this regime of two-dimensional perturbations. It is well known that 
in perturbed shear flow the picture of streamlines is of Kelvin's cat's eyes (figure 3) 
inside which fluid particles are trapped. From the physical point of view the transition 
to the nonlinear CL regime means that the characteristic time t ,  = 1; of trapped 
particle motion in the wave becomes shorter than both the time of vorticity diffusion 
1,. = I'/v (on the CL scale I) and the characteristic time of evolution (i.e. time of capture 
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of new particles) t ,  = 1;’. In other words, this transition takes place when trapped 
particles have enough time for mixing inside the cat’s eyes. (In spatial-evolution 
problems we replace ‘time’ by ‘streamwise distance’.) 

In the inviscid limit (I’ = 0) the vorticity is an integral of the motion and each fluid 
particle carries its own value of vorticity along its trajectory. Because the orbits of 
trapped particles are non-isochronous, the particle mixing leads to a highly oscillating 
fine-scale distribution of vorticity inside the cat’s eyes. As a result an exponential 
growth of amplitude changes to damping oscillations around some constant value 
(Stewartson 1978; Churilov & Shukhman 1987a; see also Goldstein & Leib 1988). It 
should be emphasized that two-dimensional perturbations move into the nonlinear 
CL regime from a linear stage of development (i.e. from the stage of exponential 
growth). The presence of viscosity leads, first of all, to damping of the fine-scale 
structure of the vorticity distribution due to particle mixing and to the formation of a 
smooth ‘plateau’ in the vorticity profile inside the cat’s eyes (Churilov & Shukhman 
1 9 8 7 ~ ) .  Also, viscosity tries to maintain the amplitude growth but much slower ( A  - 
6”’”) than before transition (Huerre & Scott 1980; Churilov & Shukhman 1987a; 
Goldstein & Hultgren 1988). Note that the character of the transient behaviour 
strongly depends on the value of v :  at high viscosity (low supercriticality, yL < v1I3) the 
wave amplitude varies monotonically and the process of transition as a whole is quasi- 
steady, but at low viscosity (high supercriticality, yL > vl/’”) amplitude growth becomes 
monotonic only after some oscillations, and the transient CL dynamics is highly 
unsteady (see figure 4 in Churilov & Shukhman 1 9 8 7 ~ ) .  After transition to the 
nonlinear CL regime the perturbation evolution (described by NEE (1.3)) is quasi- 
steady and qualitatively the same ( A  - 5”’”) over wide range of v. In other words, 
from both CL regimes, viscous and unsteady, a perturbation moves into the same 
nonlinear CL regime. 

In this paper we shall show that weakly three-dimensional disturbances (k,2 -4 1) with 
a growth of amplitude also move into the regime of a nonlinear CL, but this transition 
differs greatly from the two-dimensional one when k,2 is not too small (k,2 B v213). 
Namely, perturbations move into the nonlinear CL regime from a stage of nonlinear 
deoelopment at v2I3 < yL < k,2 and from a stage of linear development (as in the two- 
dimensional case) at higher supercriticality. In the most interesting case (k,2 $ v1l3) 

transition from the viscous CL regime (v2/’” < yL < 1 ~ ~ ~ ~ )  is preceded by a phase of 
power-law growth A - [‘I4 in accordance with equation (1 3, and transition from the 
unsteady CL regime (v113 < yr, < k,2) is preceded by an explosive growth A N (6, - ,35/2 
governed by equation (1.4).  It should be noted that the transition to the regime of a 
nonlinear CL through the explosive growth phase in the regime of an unsteady CL is 
a totally new type of evolution, specific precisely to weakly three-dimensional 
disturbances : in a strongly three-dimensional case (k, = O( l), C & S) or in two- 
dimensional problems with singular neutral modes (Churilov & Shukhman 1992) the 
amplitude at which such a transition occurs cannot be attained in the framework of 
weakly nonlinear theory. 

Because the transition to the regime of a nonlinear CL takes place from a nonlinear 
stage of perturbation development it is accompanied not only by a reduction (1.2) of 
growth rate but also by a reduction of nonlinearity in the NEE. We have calculated 
such a reduction for quasi-steady transition from the viscous CL regime and find that 
for the nonlinear term of the NEE ( 1 . 5 )  the reduction factor is even stronger than for 
the linear one and is equal to (-@/n)*. In the formation of this new disturbance 
dynamics quite a non-trivial role is played by the outer diffusion layers (ODL, see 
figure 3) sandwiching a quasi-steady (i.e. viscous or nonlinear) CL and connecting it 
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with the almost non-dissipative linear and unsteady regions of the external flow (one 
should distinguish the ODLs from (inner) diffusion layers situated near boundaries 
of cat’s eyes, e.g. Haberman 1972; Brown & Stewartson 1978). (Note that non-local 
nonlinearity in (1.5) is also due to ODLs (Wu 1993b; C&S).) 

Transition from the unsteady CL regime clearly includes the stage of oscillatory 
amplitude development due to trapped particle mixing, but after the formation and 
viscous damping of a fine-scale highly oscillating vorticity distribution inside the cat’s 
eyes the amplitude evolution becomes quasi-steady and monotonic, and further 
development proceeds in rhe same nonlinear CL regime as after transition from a 
viscous CL. To study the transition from an unsteady CL regime in detail the 
numerical solution of appropriate equations ((2.13H2.15)) is needed and this will be 
done in a separate work. However, the physical nature of the transient processes is 
quite transparent and we have no reason to doubt that picture of evolution described 
above is correct. 

The purpose of this paper is to study - in the framework of the simplest model of a 
plane shear flow - the transition from two-dimensional to three-dimensional behaviour 
ask, increases. We investigate the spatial evolution of the travelling wave (the temporal 
one is ‘ two-dimensional’ at arbitrary k, because the applicability conditions for 
Squire’s theorem are valid; for further detail see C&S). Namely, we consider the 
downstream (x-direction) development of an oblique (travelling at some small angle to 
the stream) wave generated by a source of frequency w located near the origin of the 
mixing layer (formally, a t  6 = - co). This problem may seem somewhat artificial 
because it is very difficult to excite a single weakly oblique plane wave. However, the 
plane mixing layer is a reasonably good approximation for, say, an axial jet with small 
curvature (i.e. ratio of shear layer thickness to its radius) in which a single low-m 
travelling helical wave can be generated in an experiment (see C & S and references 
therein). On the other hand, the problem considered in our paper is rather complicated 
and the choice of as simple a flow model as possible is appropriate. 

The paper is organized as follows: in 92 we formulate the problem and derive the 
equations describing the perturbation behaviour inside the CL; the structure of the 
quasi-steady nonlinear CL is defined and NEE are derived in 93; and 94 is concerned 
with a discussion of the results obtained. The Appendix gives some useful properties 
of the solutions of the well-known nonlinearly viscous equation arising in the case of 
a nonlinear steady-state CL. 

2. Problem statement and basic equations 

monotonically increasing function). We write the Navier-Stokes equations as 
Consider a plane shear flow v, = u(y)  (for simplicity, it is assumed that u ( y )  is a 

v - v  = 0, I 
av  6 V  
- + u(y) -+ u’uy e, + ( v -  V ) v  = - V p  + vV2v, 
at ax 

where v and p are, respectively, the velocity and pressure perturbations, e, is the unit 
vector in the x-direction. All quantities are scaled by a characteristic flow velocity and 
shear layer width, and a prime denotes the y-derivative. Let a disturbance be produced 
by an external source with frequency w and let it propagate in the form of a wave 
travelling at an angle to the flow with a (two-dimensional) wave vector k = (k,, k,) (in 
what follows everywhere k, = k) ,  but let it evolve strictly downstream, i.e. in x. The 
construction of the outer solution faithfully copies that reported in C & S; one needs 
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only to put r +  co, rc/r  = 1, and m/r ,  = k,. As the main perturbation, as in C& S, we 
choose a pressure perturbation in a linear approximation which is conveniently 
expressed immediately in a real form 

where c + 1 is a parameter characterizing the disturbance amplitude, and g( y )  is an 
eigenfunction of the neutral mode with k,  = 0 calibrated by the condition g = 1 at a 
critical level, i.e. when y = y , ;  amplitude A = cB and phase 0 are slowly evolving 
downstream (in x) .  It is assumed that the disturbance is a weakly supercritical one, i.e. 
the Strouhal number is slightly less than a critical value: 

w,, - w < w,,, where w,, = wo - ck,2/2k; 

wo is the frequency (Strouhal number) of the neutral mode with k,  = 0, k is a 
corresponding wavenumber, and c = wo/k. 

In a CL we need to be able to take into account the viscosity, the 'non-stationarity' 
(we have conserved this term, adopted in temporal evolution problems, also for the 
spatial evolution case) and the nonlinearity simultaneously ; therefore, the three scales 
(see the Introduction) 

are assumed to be of the same order of magnitude. In addition, because the transition 
to the regime of a nonlinear CL from the regime of an unsteady CL occurs when A - 
k: (see C & S), it is necessary to assume k, = O(c1l4). Accordingly, we introduce 

p = 2~Bg(  y )  cos (kx + k, z - wt + @), 

I, ,  - v1l3, 1, - IB-'dB/dxl, 1, - P 

1 (2.2) 
6 = pU61/2x, 5 = 2 / 4 2 ,  y -  y ,  = P Y ,  

v = P 7 ,  w = wo + p u ~ ' / ~ 8 ,  k,  = ~ ' l ~ q .  J 
The parameters 7 and ,LA are, generally speaking, of O(1). However, when it is 

necessary to consider a particular regime of a CL, their order should be varied. Thus, 
the regime of a viscous CL corresponds to 7 % 1, the regime of an unsteady CL to 
p >> 1, and the regime of a nonlinear CL to 7 << 1, p 4 1. 

Strictly speaking, the parameter Q should be introduced not as the measure of the 
deviation of the frequency of the excited disturbance from the frequency of the neutral 
mode with k,  = 0 but as the measure of supercriticality, i.e. by the relationship w = 
w,, +,~c' /~52,  where w,, = wo - c q 2 P / 2 k .  However, such an 8 would only increase the 
unwieldiness of the formulae, without changing the final form of the NEE (see, for 
example, (3.28) and ( 4 . 4 ~ ) ) .  

The inner ( y  +- y,) asymptotic representation of the outer solution has the form (only 
the pertinent terms are written out, u = {u,v,  w}) 

Y-k2B,  

+ T ( z + k P ) }  kB, Y2 u r  + . . . , 

( 2 . 3 ~ )  

(2.3 b )  

( 2 . 3 ~ )  
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where, for brevity, we introduce the designations 
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a 
ag 

B, = Bcos9, B, = BsinS; 9 = kx+qt;-wt+@(5) ,  B,,, = - (B, ,J  

and the prime denotes derivative with respect to y ,  u: = ~ ’ ( y , ) .  
The coefficient a (in (2 .3b))  of the expansion of g ( y )  in the vicinity of y = y,, 

g = 1 - ikk2(y -y,), + ~ ( J J  - yJ3  + . . . , 
is determined only as a result of solving the boundary-value problem for g ,  

k 2 g = 0 ,  g+O as y-tkco, 
d2g 2u’ dg 
dy2 u - c d v  

and we will not need it in an explicit form. 
The solution of the outer problem is also known to give a relationship between the 

coefficients d:  and d;  (see (2 .3b)) ,  the so-called modified solvability condition (MSC): 

(2 .4)  d : - d ;  = 4 2 ( Q B , + c B , )  I l -2“(2pkB,-q2B,)  I, ,  
PU’ U’ 

k2 k 

where (2.5) 

and the singular pointy = y ,  is indented from below (because u: > 0). Note that in the 
expression for Il the second term on the right-hand side represents a semi-residue (with 
an opposite sign) in y = y,, hence in general Il is an integral in the sense of the principal 
value. In a frequently used model with the velocity profile u ( y )  = c+tanhy we have: 
y ,  = 0, u: = 1, ur = - 2 ,  k = 1, w,, = c, g ( y )  = l/coshy, Z, = 0, and I ,  = - 2 .  

When solving the inner problem, one gets a relationship of the form (2.4),  but with 
a different right-hand side. By comparing it with (2.4), one obtains nonlinear evolution 
equations for B(5) and @(a. 

For constructing the solution inside a CL, we introduce 

u = EU, v = EV, w = E 3 / 4  w, p = EP 

and pass to the variables Y, 5 and 6. Equations (2.1) take the form 

VIP + E l / , (  u, + WC) + €put = 0, (2 .6a)  

(u: Y - p Q / k )  U , + ~ C U ~ +  V U I . - y U , . , . + p q  = - C ” ~ ( P ~ + U ;  V )  

-E’‘~( ,L( .M; YU,+ UU,+ WUC+$; Y’V)+O(E) ,  (2 .6b)  

(u; Y - p Q / k )  I / , + / L c ~ +  V V y - v h - I r  = - E - ~ P ~ + O ( ~ ” ) ,  ( 2 . 6 ~ )  

(u: Y - p Q / k )  W , + ~ C % +  VWy-vWyy+PC 

= -E~/~( ,uu;  YW,+ VW,+ W ~ ) + O ( S ) .  (2 .6d)  

We search for a solution of this system in the form of an expansion 

f = f(1) + € ’ / 2 f ( 2 )  + E f f ( 3 )  + . . . . 

V?) = 0, p’,” + u: v(1) = 0, p?)  = 0, 

To leading order equations (2.6a-c) yield 
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which after matching to (2.3a, b) leads to 

From equation (2.6d) using (2.7) we obtain 

YW'" = 2qB,, 

where 

The second iteration of equation ( 2 . 6 ~ )  gives P'y") = 0, and matching to (2.3a) shows 

(2.104 

(2.10h) 

(2.lOc) 

Y c 5  J 5 )  (2.10d) 

that PcZ) = 0. Next, from the system (2.6) we obtain 

V?'+ up+ wy = 0, 
y U"' = - u; V'2) -pp:" - u: V'2' - 

2k 2pck - 
y ( k u :  Y - p Q ) B , + y B ,  = -P3)  Y ,  
UC U, 

YV'" 

9 W'Z) = - V'Z) W'1) -CUM' yw'" + U(1) W'1) + W'1) W'1) . 

In view of the fact that a/dx = (k/q)d/dC, equation ( 2 . 1 0 ~ )  is integrated to give 

G,+ U'" +- 4 W'" = 0, Gz = V(Z). 
k 

By acting with the operator (a /aY)  Y on the result and using (2.7) and (2.8), we obtain 
L?Gylr = 0, from which VP\. = 0 follows. Matching to (2.3b) gives 

Finally, from (2.10a) and ( 2 . 1 0 ~ )  we obtain 

In a third iteration we need only the first two equations of the system (2.6): 

V:"' + UL2) + W1"' +pU?' = 0, (2.114 

-@u: YU?'+ U'"U~"+ W'"U'"+'U'" 5 2 c  YZV'"). (2.11 6 )  

y U ' 2 '  = - P'3) - V'3' - V'Z) U'1) 
X Y 

By integrating (2.1 1 a) over x, 
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and acting on the result with the operator (a /aY)9 we obtain 
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a 6a 2k2 
9G;y = -p- 9 U r  - p p B c  + 2k(u;/u: + k2)  B, Y---;-p(SZB, + cB,). 

ay UC 

The asymptotic expansion (2.3 b)  contains at U(2)  a term - Y2. We separate from G* 
the respective contribution by putting 

1 

uc 
G* = G-T(u;/u:+k2) B, Y2. 

2UN’ 
(2.12) Y GYy-p- W* = , L J - u ~  4 W f ’ + L p ( Q B , + c B , ) ,  ( f k U i 2  

Then 

where W,* = W(”. 
Equations (2.8) and (2.12) are the basic equations that define the solution inside the 

CL and the CL contribution to the MSC (2.4). It is convenient to drop the upper index 
and write them as 

9 W  = 2gB,, ( 2 . 1 3 ~ )  

(2.13b) 4 
k 

9 F  = P - U :  4, 

( 2 . 1 3 ~ )  

(2.13d) 

which clearly demonstrates that T defines a ‘two-dimensional ’ contribution to the 
vorticity, and W and F represent a ‘ three-dimensional’ contribution. Matching to 

4 
k 

Gyy = F+ T + p -  W;s, 

(2.3 b, c) requires quite a definite behaviour as Y +  f co : 

243,  2qB2 
W*-- +- +..., 

ku: Y kuL3 Y3 

2P4”a 

2pull) 

F -  -- 

T - - C  (12Bc- ch,) Y-’+. . . . 

k3U: y2 + ’ ‘ * 7 

kuL3 

The MSC (2.4) is conveniently written as 

- 1 1 ( & ! + ~ q 2 / 2 k )  dY(Gyycos9), 

2 p 4  dB 
-1 -= dY(Gyysin9), 

k3 ‘d6 ./-, 
where dY( ...) = l im12dY( ...); (...) = 

2-02 

( 2 . 1 4 ~ )  

(2.14 6 )  

( 2 . 1 4 ~ )  

( 2 . 1 5 ~ )  

(2.15 6 )  

Equations (2.13H2.15) describe the evolution of disturbances in the three CL 
regimes: viscous, unsteady and nonlinear. One may demonstrate that in the limiting 
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cases of an unsteady and viscous CL the nonlinear evolution equations that follow 
from (2.13H2.15) coincide, respectively, with equations (4.1) and (4.5) from C & S (in 
the limit of a plane flow). The limit of a nonlinear CL will be considered below. 

3. Quasi-steady nonlinear CL 
The goal of this Section is to calculate the integrals on the right-hand sides of 

(2.15a, b). Each of them contains three contributions. It is easy to see that by virtue of 
(2.14a) the contribution due to W* is zero, hence there actually are only two 
contributions : ' two-dimensional ' (caused by T )  and ' three-dimensional ' (caused by 
F). In the linear (viscous and unsteady) CL regimes they have already been calculated 
by C & S; therefore, here we are interested mainly in the regime of a nonlinear CL and 
in the transition to it. 

As was discussed in the Introduction, experience of solving similar two-dimensional 
problems (Huerre & Scott 1980; Churilov & Shukhman 1987a; Goldstein & Hultgren 
1988) shows that the evolution leads to a quasi-steady nonlinear CL. Indeed, the 
evolution that starts in the viscous CL regime (yL < 1 J 3 )  continues to proceed in a 
quasi-steady manner (,u 6 min ( 7 , l ) ) .  In the case of the transition from the regime of 
an unsteady CL ( y L  > Y " ~ ) ,  after a sufficiently fast relaxation stage, a smooth 
distribution is reached on the vorticity profile inside the cat's eyes, the evolution rate 
is decelerated so that the relationship 

p < y < l  ( 3 . 1 )  

is established, and main unsteady processes are pushed to the region 1 < 1 Y1 < 
Thus the region, which to this point we have called the CL, is divided into three: a 
central layer (as before, we will call it the CL because it is in this region where the 
resonant wave-particle interaction takes place); and two outer diffusion layers (ODL) 
with a scale I YI - 6-' = (,r,~/,u)'/~ (figure 3 )  sandwiching the central CL and acting like 
a buffer between it and the outer regions. Inside the ODLs viscous and unsteady terms 
have the same order. 

ODLs are not new in critical-layer analysis. They are present in all problems 
involving quasi-steady (viscous or nonlinear) CLs and yL > Y (e.g. Churilov & 
Shukhman 1987a, 6) .  In two-dimensional problems ODLs play a passive role: they are 
necessary only for matching a mean-flow distortion (zeroth harmonic of the 
perturbation) inside the CL to those in the outer regions of the flow.? In contrast, in 
three-dimensional problems ODLs can play an active role: they contribute to 
nonlinear terms in the evolution equations, e.g. the nonlinear term in (1 .5 )  is due to 
such a contribution (Wu 19936; Wu et al. 1993; C&S). Until now active ODLs have 
only been studied in the case of a viscous CL. In this paper we will study the nonlinear 
CL regime and the (active) role of ODLs in the occurrence of nonlinearity in the 
corresponding NEE. 

We will surmise that in the weakly three-dimensional case under consideration the 
transition from both viscous and unsteady CL regimes finishes in the same quasi-steady 
nonlinear CL regime (see the Introduction), and we will calculate the integrals involved 
in the MSC (2.15a, b)  in the quasi-steady limit; after that, we will check the results 
obtained for self-consistency. It is found that one can obtain a unified expression for 
the desired integrals in the entire region of quasi-stationarity, i.e. in the region of a 

t Haberman (1972) was the first who pointed out that in some problems the outer asymptotic 
expansion of a solution inside a CL does not match to inner asymptotic expansions of solutions in 
the outer regions of the flow. 
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viscous CL and in the region of a quasi-steady nonlinear CL. For ‘two-dimensional’ 
contributions this has already been done (see, for example, C & S) : 

( 3 . 2 ~ ~ )  

(3.2b)  

The functions @,(A) and @,(A) are defined, for example, in C & S;  we need only to 
know their asymptotic behaviour: 

C‘”h + O(A’), A 4 1 ; C‘” = - 5.52 

-x+O(/\-4/3), A B 1, 

-x+O(A-4/3), h 9 1. 

‘”h-’ + O( l), A Q 1 ; C(’) = - 2.72 

@ 1 ( 4  = 

@,(A) = 

( 3 . 3 4  

(3 .3b)  

Let us now calculate the ‘three-dimensional’ contribution. Inside the CL it is 
convenient to use, instead of the variables x, Y and c, the variables 8, Z and T .  

Equations (2.13 a, 6) take the form 

(3 .4)  2B 

where 
2 a a 2  

as az ~ 7 ~ 2 ’  
A? = Z-+sin$--A- 

W = f i + ( & / k )  Y ,  lV = (2B)”’ W ,  Z = U: Y/(2B)”’, 7 = [/c, 

and the dot denotes differentiation with respect to 7. 
In ODLs it is convenient to introduce 

S = Y6, where 6 = (,u/il)’/z 

and to write (2.13a, b )  as 

(3.7) 

The scheme for constructing the solution is thus: the solution in the CL is matched 
to the solutions in the ODLs which are then matched to ( 2 . 1 4 ~ ~  b) .  The solution inside 
the CL is sought in the form of a double expansion: 

OC 

f = f ( 0 )  + ,p) + p f C 2 )  + . . . , j - ( O  = r, ~ 7 7 %  7 0 .  

n=o 

Solutions in the ODLs are constructed in the form of expansions: 

f = S-lf‘O’ + f ( l )  + 6f‘Z) + . . . 
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3 .1 .  CL:  O(60) 
The functions do) and Po) satisfy the equations 

which coincide with (A 1) (see the Appendix) and may be found in almost every work 
in nonlinear CL. The main iteration of the solution (see (A 8)) is 

( 3 . 1 0 ~ )  
IKI < 1 ,  

F'O.0' = (Da l&+F, ( . r ) ,  K > 1 
(3.10b) 

where (T = sign Z, K = Z 2 / 2  + cos 8, Q(K) = 1 d9[2(~-  cos 19)]'/~, we and F, represent 
the even (relative to transform (A2)) part of the solution. The asymptotic 
representation (3.10) as K +  co is conveniently written immediately in terms of the 
variable S: 

I;(7), IKI < 1 ,  

( 3 .1  1 u) 

(3.1 1 h) 

Let us now match ( 3 . 1 1 )  to the solution in the ODLs. 

3.2. ODL: 0(F1) 
and F0) also satisfy the same equation: Here 

p @ o )  a@o) a 2 p )  a p 0 )  

-0 ,  - 0, 
as2 a7 a s 2  a7 

but, according to (2 .14q  b) and (3.6)' they have different asymptotic representations 
asS+co:  

The respective solutions @ O )  = - SquL/k, Po) = 0 when matched to ( 3 .  I 1) give (recall 
that I? = (2B)'I2 w )  

C = - 27tq/k, D = 0. (3.12) 

@ ( O )  + - Squ:/k, Po) + 0. 

3.3.  ODL:  0(1) 
Functions @')(S, 7 )  and F(')(S, 7)  satisfy the equations with boundary conditions 

(3.13a) 
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The solution of (3.13) has the form 

S.  M .  Churilov and I .  G.  Shukhman 

+$Sl(" d7'(7~7'~)-'/~ Wp(7-7') Wp(7) = [ 2 ~ ( 7 ) ] l / ~  ~ ~ ( 7 ) .  (3.15) 
0 

Its asymptotic representation as S+O, 

contains a term proportional to ISI, for matching to which it will be necessary to have 
an even (with respect to (A 2)) perturbation in the CL of O(6). As will be shown below, 
w(') satisfies equation (3.9), i.e. its even part is independent of Z (see the Appendix). 
Consequently, matching is possible only when we = 0. Similar reasoning leads to 
F, = 0. Thus: 

w,(7) = 0, W,(T) = 0; 4(7) = 0, F'O'(7) = 0, (3.17) 

i.e. do) is an odd (with respect to (A 2)) function of Z and 9. 
The solution for F(I) is readily constructed from (3.15). We introduce the function 

V(S,7) ,  such that 

Obviously, V(S, 7 )  = d S ' W ( S ' ,  7), 

where the sign of the lower limit coincides with the sign of S, and 

AS S+O 

(3.19) 

3.4. CL: O(6) 
The functions dl) and F(') satisfy the equation Af = 0, as w(O) and F(").  It can be 
shown that they are also odd with respect to (A 2). In particular, the main iteration of 
F'" has the form 

with the asymptotic representation as 1ZJ + co 

D 
27t 

F('*O) - CT'(lZ( + C'"/4) + O(z-1) .  
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Matching to (3.19) gives 

(3.20) 

3.5.  ODL: O(6) 
The functions #(2) and F(2) satisfy the same equations as do I?(,) and F('), but with 
different boundary conditions for S = 0. In particular, 

( 3 . 2 1 ~ )  

3.6. C L  contribution to the MSC 
We can now embark upon a calculation of the integrals that make a contribution to 
the MSC (2.15a, b)  

4 =  dY(Fsin9) and 4 =  dY(Fcos9). f f 
For calculating 4, we write (2.13b) in terms of the variables 9, Y and 7 :  

ku; 

We multiply this by Y and integrate over Y and 9: 

Upon integrating by parts in view of (2.14a, b), we obtain 

It should be emphasized that integration is performed over the entire inner region, i.e. 
over the CL and over both ODLs. The CL contribution to the integral on the right is 
O( l), while the ODLs give 



72 S. M. Churilov and Z. G. Shukhman 

It is interesting to note that this same result can be obtained on the basis of the 
solution inside the CL alone (cf. Churilov & Shukhman 1987a). We introduce F =  
F- D, Z/2x to give 

- aF aF a2F D 
as az az2 27~ 

A F =  Z-++in6--A- = -'sin$. 

We multiply this by Z and integrate over Z and 6: 

- D,C'" 
dZ(Fsin-9) = A(P+-F-),  F* = lim F =  &-. s r-i-oc 871 

It is easy to see that (Fsin6) = (F("sin9); therefore, 

whence (3.22) follows. 
As far as the integral J ,  is concerned, however, the contribution of the function F(') 

to it is zero owing to the oddness of F(') with respect to transform (A 2). And although 
the inclusion of the unsteady terms on the right-hand sides of equations (3.4) and (3.5) 
breaks their invariancy with respect to (A 2), it can be shown that no contribution to 
J ,  is present up to and inluding O(A2S5) = O(,,!45/2/q1/2), so that the 'three-dimensional' 
contribution to the MSC (2.15~) turns out to be uncompetitive compared with the 
'two-dimensional' contribution (3.1). Thus, to the above accuracy it can be assumed 
that 

J ,  = 0. (3.23) 

3.7. The nonlinear evolution equation in the regime of a quasi-steady nonlinear CL 
On substituting (3.2), (3.22) and (3.23) into (2.15a, b) and returning to the evolution 
variable E = c7, we obtain a system of NEE: 

ckuy C(') dB 
" k d0 d t  (? z i  ) 2ui4 A(5) d t '  
-B-= -zl+-z2 B---- 

Here A(5) = ~ g [ 2 B ( < ) ] - ~ / ~ .  k 

Upon eliminating dO/d( from this system, we get 

lJ B2(<- Q. (3.24) 

(3.25) 

(3.26) 

is a nonlinear growth rate of 'two-dimensional' perturbations in the regime of a quasi- 
steady nonlinear CL (A + 1) (see e.g. Goldstein & Hultgren 1988), and 

D = Zt/k2 + ( ~ k u ~ / 2 u ~ ' ) ~  C")C'2). (3.29) 
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4. Discussion of the results 
Based on the NEE (3.27) for the regime of a nonlinear CL and the NEE obtained 

in C&S for linear (viscous and unsteady) CL regimes we are ready to consider the 
evolution scenarios as a whole. For convenience, we write these equations in a brief 
form using the physical variables 

A = aB, x =  US"^), k: = P q 2 ,  v = 7 , ~ ~ " :  

viscous CL regime (yL < v1I3, A < v2/,) 

dA ~ss-'/~[A(x-s)]~; 

nonlinear CL regime [yL < v1I3 and A > v2/, or yL > v1l3 and A > max(kt,y2,)] 

and unsteady CL regime (vl/, < y L  < k,2, A < ki) 

dA 
- = y L  A + b, e - ' ~  k,2 s.1 dss3 i: da(r2A(x-s) A(x-as) J(x-( 1 + (r)s), (4.3) 
dx 

where y L  is a (spatial) growth rate from linear theory, and the coefficients b,, b,, b,, p 
and @ are determined by flow and wave parameters and are O(1). 

At the outset we consider not too small k,: v1l3 4 k,2 4 1 .  By analogy with two- 
dimensional problems, it should be expected that the evolution of disturbances starting 
in the regime of a viscous CL ( y L  < P) and in the regime of an unsteady CL ( y L  > 
v113), will differ greatly. Therefore, we will consider these cases separately. 

4.1. Transition from the regime of a iiwous CL 
As has already been pointed out at the beginning of $3, the entire evolution of a 
disturbance that starts in the regime of a viscous CL, including the transition to the 
regime of a nonlinear CL, usually has a quasi-stationary character and can be 
represented by a unified evolution equation. To obtain it, it is necessary in (3.24) and 
(3.25) to replace C'l'A and C(2)/A with @,(A)  and @,(A), respectively (see (3.3)), with 
the result that the NEE (3.27), written in terms of physical variables, takes the form (cf. 
(4.1) and (4.2)) 

dx 

where 

713/2z0 . (4.4 b)  
'2 

D(co) .  b, = 
4c1/' u:4 D( co) ' A(x) = V%[~A(X)]-~ '~;  @(A)  = @,(A)- 

k D ( 4  ' 

and 

(4.44 

D(A) = z i p , +  (cku;/2uy @,(A)  @,(A)  
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is a generalization to arbitrary values A of the quantity D = D(0) defined by (3.29). 
Based on (3.3) it is easy to see that the ratio D(A)/D(oo) deviates only slightly from 1 
as A varies from 0 to 00 ; therefore, in ( 4 . 4 ~ )  one can put @(A) z G1(A). 

Equation (4 .44 describes not only the evolution of disturbances in the regimes of 
viscous and nonlinear CLs but also the transition from one regime to the other. In the 
limit of a viscous CL ( A  B 1) it becomes (4.1) (cf. also equation (4.8) in C&S), and in 
the limit of a nonlinear CL ( A  4 1) it becomes (4.2). 

The main new feature of the problem solved compared to those considered earlier 
(Churilov & Shukhman 1 9 8 7 ~ ;  Goldstein & Hultgren 1988; Churilov 1989; Shukhman 
1989) is that the nonlinearity threshold throughout the entire region of the viscous 
CL (y < v"3), 

A - A ,  = v3I4/kr (4.5) 

for not too small k,  (k,2 > v1l3), lies below the boundary of the nonlinear CL, A - v2I3, 

so that this region is reached not by an exponentially growing linear wave but by a 
nonlinear disturbance that evolves as 

A - (yy2 ~ ~ / ~ / k ~ )  x1l4. (4.6) 

Therefore, the transition to regime of a nonlinear CL must be accompanied not only 
by the well-known reduction of growth rate (1.2) but also by a still totally unstudied 
transformation of the nonlinear term. 

Because this nonlinear term is due to outer diffusion layerst rather than to the CL, 
C&S supposed that it does not change in the process of transition to a nonlinear CL 
regime whereas the linear growth rate yL is reduced according to (1.2). Guided by this 
hypothesis, C & S found the law of amplitude growth A - XI/'. 

The investigation undertaken in this paper has shown this hypothesis to be 
untenable. It has been found that the formation of the nonlinearity proceeds in a much 
more complicated manner, with the combined involvement of the CL and ODLs, and 
it is also reduced as much as twice (see (4.4)) rather than singly like the growth rate. 

Equation (4 .44 can be used to construct a full evolution scenario for the originally 
small perturbation that starts from the regime of a viscous CL (yL < v1l3). On reaching 
the nonlinearity threshold (4.3,  its exponential growth is superseded by a quasi- 
stationary (i.e. the left-hand side of the NEE (dA/dx) is less than each of the terms on 
the right-hand side) power-law growth like (4.6). The transition to the regime of a 
nonlinear CL when A - v2/3 means the replacement of NEE (4.1) with NEE (4.2). At 
first, the quasi-stationary character of disturbance growth is conserved, but there is a 
change in its law: 

(4.7) 

We wish to note an interesting consequence of the reduction of the second ('nonlinear') 
term on the right-hand side of the NEE: whatever the power law of amplitude 
variation, the second term on the right-hand side of (4.2) decreases as x-I1'. 

With a further growth in amplitude, the terms, on the right-hand side of (4.2) 
decrease, while the left-hand side (growth rate) remains constant, and when 

(4.8) 

all terms in (4.2) become of the same order of magnitude. 
The coming into play of an unsteady term produces the same effect as the 

incorporation of an inductance coil in an electric circuit: the amplitude growth rate is 

t More precisely, it is due to the interaction of 'regular' ( F )  and 'singular' ( W )  components of the 
perturbation which proceeds just in ODLs. 

A - (7: v/k:)  X. 

A - A, = k:/y:  
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FIGURE 4. The evolution of 'weakly three-dimensional' disturbances when k: > v1/3. Curve 1, 
A = A, = y:/* - nonlinearity threshold in the viscous CL regime; curve 2, A = A, = 
yi'2/k, - nonlinearity threshold in the unsteady CL regime; curves 3 and 4, formal boundaries of the 
nonlinear CL with the viscous and unsteady CL, respectively; curve 5, A = A ,  = k:/yF - boundary of 
a change of the quasi-stationary law of growth (4.7) to a 'classical' one (4.9). 

decelerated, and the second term on the right-hand side of (4.2), with its invariable law 
of decrease, becomes uncompetitive: a 'classical' growth law in the regime of a 
nonlinear CL comes into play (Huerre & Scott 1980; Churilov & Shukhman 1987a; 
Goldstein & Hultgren 1988; Churilov 1989; Shukhman 1989): 

A - (YLV)2/3 x2/3. (4.9) 

The above evolution scenario is shown on the left-hand side of figure 4. 

4.2. Transition from the regime of an unsteady CL 
Consider now the development of a disturbance that starts from the region of an 
unsteady CL: yL > vl/'. If the supercriticality is not too large (yL < k:), the nonlinearity 
threshold 

(4.10) 

also lies below the formal boundary of a nonlinear CL A - y i .  Moreover, as A > A, 
the amplitude growth rate is not decelerated, as in the regime of a viscous CL (see 
(4.6)), but is accelerated. According to (4.3), the amplitude starts to grow explosively : 

A - k;'(x, - x ) - ~ / ~ .  (4.1 1) 

In all previous work (Churilov & Shukhman 1988; Goldstein & Leib 1989; Goldstein 
& Choi 1989; Shukhman 1991 ; Wu et al. 1993) the explosive stage of growth was found 
to be self-sustaining: an unsteady scale lt - IA-'dA/dxl increased so rapidly that it 
always remained larger than a nonlinear scale I, - A P  (in our case p = 1/2) and the 
regime of the nonlinear CL could not occur in the evolution process. In our case, 
however, 1, - (k, and, because of the smallness of k,, it becomes equal to 1, when 

A"&=YL 512 / k 2 
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kt ”113 Y L  

FIGURE 5. The evolution of ‘weakly three-dimensional ’ disturbances when k,2 < d’‘. 
Curves are the same as in figure 4. 

A - k:. This means quite a new evolution situation, namely the transition to the 
nonlinear CL regime from the stage of explosive growth. It should be emphasized that 
this is a feature of a ‘ weakly three-dimensional ’ problem : in two-dimensional problems 
the transition (if any) proceeds from the stage of exponential growth, while in ‘strongly 
three-dimensional’ problems in the framework of weakly nonlinear theory it does not 
occur at all. 

The transition stage itself is a rather complicated unsteady process and requires a 
separate investigation. However, as has already been pointed out, the physical nature 
of the transient processes is the same as in the two-dimensional case where there is 
experience of solving similar problems. This experience shows that the relaxation must 
be followed by the quasi-steady nonlinear CL regime, to which the NEE (4.2) 
corresponds. It is easy to see that, in accordance with (4.2), the amplitude initially 
grows as (4.7) and then, upon reaching the level (4.8), it grows according to a ‘classical’ 
law (4.9) (figure 4, middle part). 

One can see that, with increasing yL, the region of ‘weakly three-dimensional’ 
behaviour, i.e. growth according to (4.1 1) and (4.7), becomes narrow. Finally, when 
yL > k,2 the evolution scenario becomes totally ‘two-dimensional ’ : exponential growth 
up to the boundary A - y i  between unsteady and nonlinear CLs, followed by CL 
restructuring, a reduction of growth rate, and a further growth according to the law 
(4.9) (figure 4, right-hand side). 

Thus, yL - k,2 serves as the right-hand boundary of the region of ‘ three-dimensional’ 
behaviour on the amplitude-supercriticality diagram. If k, is increased to k, = O( l), 
this boundary will be shifted to the right, the threshold of transition to the nonlinear 
CL regime ( A  - k:) becomes of O(1) (i.e. falls outside the validity range of weakly 
nonlinear theory), and we obtain a diagram for the ‘strongly three-dimensional’ case 
(C & S, figure 8). If, however, we, on the other hand, decrease k,, then the region of 
‘three-dimensional’ behaviour is shrinking. For k: < v1l3 the respective diagram is 
shown in figure 5 .  All disturbances that start in the unsteady CL regime (yL > v1I3)  fall 
within the region of ‘two-dimensional’ behaviour (with a typical transition to the 
nonlinear CL regime from the stage of exponential growth and with a subsequent 
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development according to the law A - x2l3), so that the region of explosive growth 
disappears. Part of the disturbances (with k,2 < y L  < v ’ / ~ )  that start from the viscous 
CL regime, also fall within this region. When yL < k,2 the nonlinearity threshold (4.5) 
is below the boundary A - v ~ / ~  of the nonlinear CL, and here there still remains a small 
region of ‘three-dimensional’ behaviour where, upon reaching the threshold (4 .9 ,  
there is alternation of the laws of power-like growth (4.6), (4.7) and (4.9) in the process 
of transition to the nonlinear CL regime and of subsequent evolution in this regime. 

in the viscous CL regime 
other (‘ two-dimensional ’) nonlinearities become competitive, which will stop the 
growth of the disturbance and will not ‘let’ it pass to the nonlinear CL regime (see 
e.g. Churilov 1989; Shukhman 1989; Churilov & Shukhman 1992). Therefore, when 
k,2 < 1 p 2 / 3  the three-dimensionality does not seem to manifest itself in any way. 

Thus, we have shown that there is a continuous transition from a totally ‘two- 
dimensional’ to totally ‘ three-dimensional’ evolution behaviour : with increasing k,?, 
the region of ‘three-dimensional ’ behaviour on the amplitude-supercriticality diagram 
is ever expanding until it encompasses the entire validity range of weakly nonlinear 
theory ( A  < 1 ,  yL < 1). 

In closing we will briefly discuss the correlation between the results of our work 
(C&S and this paper) on the evolution of a single oblique wave, on the one hand, 
and results reported by Goldstein & Choi (1989) and Wu et a/. (1993) on the evolution 
of a pair of oblique waves, and Wu (1993) on the evolution of a wave packet with 
k, + 1,  on the other. Although the cited references are concerned not only with 
slightly oblique waves but also with waves with k,  - O( l), we will consider here only 
those results which refer to the case of slightly oblique waves. 

In C&S and in the three references cited above on a pair (and on a packet) of 
oblique waves, evolution equations were obtained for the regime with a viscous- 
unsteady CL (i.e. the relationship of scales I, - I,, + lN).t Let these equations be 
written as model ones (for simplicity, we confine ourselves to the limit of an unsteady 
CL) : 

a single slightly oblique wave (SSOW) 

It should be born in mind, however, that when yL < 

a pair of slightly oblique waves (PSOW) 

(4.12 ( I )  

(4.12 h)  

As we have already discussed in detail in C&S, the fundamental difference between 
these two cases is in their singularity character. 

The nonlinearity thresholds, respectively, are 

Athr - y ~ / ’ / k ,  for SSOW, (4.13 ( I )  

and At,,,. - y: /k ,  for PSOW. (4.13 1)) 

t To be more precise, in the paper of  Goldstein & Choi (1989) the evolution equation was obtained 
only for the case of  an unsteady CL (I, % /,,,IA,), while Wu (1993~) deals with perturbations slightly 
modulated in z; however, the equation for a perturbation of  the form - cos(k,z) is readily 
reproduced from the evolution equation obtained in this paper. 
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The growth rates after traversing the nonlinearity threshold A %- Alnr are 
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y - (Ak,)”/” for SSOW, (4.14~) 

y - (Ak,)l13 for PSOW. (4.14b) 

As is evident, with increasing amplitude there is also an increase in growth rate (the 
evolution has an explosive character). 

Usually, such an explosive regime in an unsteady CL is a self-maintaining one, i.e. 
1, remains larger than 1, up to amplitudes A - O(1). Such a situation occurs for the 
evolution of both a single oblique wave (C & S) and a pair of oblique waves (Goldstein 
& Choi 1989; Wu et al. 1993), with k, - O(1) as well as in the evolution problem of 
two-dimensional perturbations of a stratified flow (Churilov & Shukhman 1988). 
However the situation changes radically in the case of small k,. In this case the scale 
of the nonlinear CL IN( - All2) can become comparable with the scale of the unsteady 
CL 11(- y )  for amplitudes A < 1, i.e. even in the validity range of weakly nonlinear 
theory. 

Indeed, when 
A - A ,  = k: for SSOW (4.15~) 

and A - A ,  = k,2 for PSOW (4.15b) 

the CL has already ceased to be unsteady but becomes nonlinear, and hence equations 
(4.12a, 6) become invalid. The evolution problem for perturbations in the PSOW form 
when A > k,2 calls for a further investigation similar to that made in the present paper, 
as was first mentioned by Wu (1993~). We emphasize that transition to the nonlinear 
CL regime takes place only for those perturbations that remain long wave in 
z(k, < 1) during the process of evolution. If, however, perturbation development 
is accompanied by a fast enough diminishing of wavelength, the CL regime may 
remain unsteady up to A = O( 1). An interesting example of such an evolution was 
described by Wu (1993~) who obtained a class of solutions in the form of waves 
modulated in z with simultaneous explosive growth in amplitude and ‘sharpening’ in 
-7 so that k,  - 
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Appendix. The generalized Prandtl-Batchelor theorem, symmetry, and 
some properties of solutions of the equation My= 0 
Consider the equation 

af azf 
as az az JZf 3 Z-+sin9--A7 = 0. 

The operator A is invariant under the simultaneous transformation 

z+-z, 9+271-8 (A 2) 

and its arbitrary solution is representable as the sum of the ‘even’ and the ‘odd’ 
components 

(A 3) AZ, 9) = f +(z, 8) + f  -(Z a), 
.f+ = ;lf(z, 9) +f( - Z,2n - a)], f - = t [ f ( Z ,  9) -f( - 2,271 -$)I, 
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FIGURE 6 .  Paths of integration in the generalized Prandtl-Batchelor theorem. 

each of which is a solution of (A 1). To investigate the properties off' and f - ,  we use 
the generalized Prandtl-Batchelor theorem (see, for example, Goldstein & Hultgren 
1988). Equation (A 1) is equivalent to the system of equations 

a2F . af ay aF +sin9--h7 = 0; - = ZJ az as az az az 
The first of them is integrated over Z, 

-++Ssin9 aF = h-+g(s), af 
as az 

and, together with the second (multiplied by Z-lsin a), yields 

It is customary (Goldstein & Hultgren 1988) to integrate (A4) along a closed 
streamline K = K~ (line 1 in figure 6) to give, by virtue of periodicity in 9, 

$%9 az = 0. 

It is easy to see, however, that (A 5 )  is also valid when integrated along a closed 
contour 2, composed of vertical segments 9 = 0 and 8 = 271 and segments of lines 
K = K~ and K = K ~ ,  with K~ =k K~ in general. This is just the generalized Prandtl-Batchelor 
theorem for equation (A 1). 

For the odd component f - ,  the equality (A 5 )  is satisfied automatically for both 
contour 1 and contour 2 when q = K ~ .  

For the even component f ' ,  (A 5 )  means that 
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for A < 1). 
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Let us show that the even part of the solution of (A 1) can only be a constant (at least 

We seek f' in the form of an expansion in a power series of A : 

f' = f ( 0 )  + Af(') + A y '  + . . . . 
It is convenient to pass to the variables K and 9; equation (A 1) then takes the form 

The principal iteration gives f ( ' )  = f ( ' ) ( ~ ) .  Substitution into (A 6) yields 

d9Z = 0, 
= - 8 ,  

i.e. df(")/dK = 0 and 
( 0 )  - p e x t .  K > 1 
- \CL7&, IKI < 1. 

Because of the continuity of the solution of equation (A 1) on the boundary K = 1 of 
the cat's eyes which was derived numerically by Haberman (1972) and proven 
mathematically by Brown & Stewartson (1978) 

f ( O )  = C,, = Cezl = const. 

By subtracting this constant from f+, the problem is brought back to the initial one. 
Therefore, in all iterationsfn) = const; consequently, f' = const. 

For completeness, we give here the first iteration of the odd part of the solution of 
f- for h < 1 :  

Sincef- also satisfies equation (A 7), gcO) = g(O)(K), and from the 27c-periodicity of gcO) 
in 9, we find 

f-  = g(0) + Ag'" + . . . . 

= 0, &(K) = d 8 [ 2 ( ~ - ~ 0 ~ 9 ) ] " ~ ,  K > 1, 

The last integral is calculated along contour 1 (figure 6). Whence it follows that 

where C is an arbitrary constant, and cr = sign(Z). 
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